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Abstract 

Intensity non-uniformity or intensity in homogeneity usually occurs in Real world Images, those images 
cannot be segmented by using image segmentation. The most commonly used algorithms in image 
segmentation are region based and depends on the homogeneity of the image intensities which usually fails to 
produce accurate segmentation results due to the intensity non-uniformity. In this paper a novel region based 
method for image segmentation which can be able to discuss with intensity non-uniformities in image 
segmentation is proposed. First according to the image models with intensity non-uniformities a local clustering 
criterion function is defined for the intensities in the image neighbourhood of each part. The local clustering 
criterion function is then integrated with respect to the neighbourhood center to give a global criterion of image 
segmentation. In a level set formulation this criterion defines an energy in terms of level set functions that 
represents the partition of image domain and a bias field that corresponds to the intensity non-uniformity of the 
image. Therefore, by minimizing the energy we can able to segment the image simultaneously and estimate the 
bias field can be used for the intensity non-uniformity correction. This method is applied on MRI images and 
real world images of various modalities with desirable performance in the presence of intensity non-
uniformities. The experiment results show that the method is stronger, faster and more accurate than the well-
known piecewise smooth model and gives promising results. As an application this method is used for 
segmentation and bias correction of real world images and MRI images with better results. 

 
Keywords –Bias field, Energy minimization, Image segmentation, Intensity non-uniformity, Level set method 
and MRI. 

I. Introduction 
Intensity non-uniformity frequently occurs in real world images due to the various factors such as 

imperfections of the imaging devices which correspond to many problems in image processing and computer 
vision [1]. Image segmentation may be mainly difficult for the images with intensity non-uniformities due to the 
overlap between the ranges of the intensity in the regions to be segmented. This makes it impossible to 
categorize these regions based on the pixel intensity. Those extensively used image segmentation algorithms 
depends on intensity homogeneity and hence not applicable to images with intensity non-uniformities .In 
general, intensity non-uniformity has been an interesting problem in image segmentation. 

The level set method is used as a statistical technique for tracking the interfaces and shapes that has been 
progressively applied to image segmentation in the past years. In the level set methods surfaces are represented 
to the zero level set of higher dimensional function called as level set function. With level set illustration the 
image segmentation problem can be formulated and solved by using mathematical theories and including the 
partial differential equations. 

The advantage of level set method is that numerical computations involves curves and surfaces which 
can be performed on fixed Cartesian grid without having no constraints. Existing level set methods for image 
segmentation can be resolute into two classes; they are Region-based models and Edge-based models. Region-
based models are used to categorize each region by using a certain region descriptors to guide the motion of the 
active contours. It is very difficult to define a region descriptor for images with non-uniformities. Most of the 
region based models are based on the assumption of intensity homogeneity. A typical example is piecewise 
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constant models and level set methods are proposed based on general piecewise smooth formulation proposed 
by Mumford and shah. These methods are able to segment the images with intensity non-uniformities however 
these methods are worked out to be too expensive and are quite sensitive to the initialization of the contour. 
Edge-based models use edge information for image segmentation; those models do not assume homogeneity of 
image intensities and thus can be applied to images with intensity non-uniformities. 

These methods are quite sensitive to initial conditions and frequently suffer from serious boundary 
leakage problems in images with weak object boundaries. A novel region based method for image segmentation 
is proposed. A local intensity clustering property and local intensity clustering criterion function for the 
intensities in a neighbourhood of each point is defined in this paper. This local clustering criterion is integrated 
over the neighbourhood centre to define energy functional, which is converted to a level set formulation 
minimization of this energy is achieved by an interleaved process of level set evolution and estimation of bias 
field. This method is applicable to the segmentation and bias correction of MR images. 

 
II.RELATED WORK 
 
Let Ψ be the image domain, and I: Ψ→R be a grey level image. The segmentation of the image I is 

achieved by finding a contour C, which separates the image domain Ψ into disjoint regions Ψ1, Ψ2,……….., 
ΨN, and a piecewise smooth function u that approximates the image I and is smooth inside each region Ψi. This 
can be formulated as a problem of minimizing the following Mumford –Shah functional 

𝑓𝑀𝑆  (𝑢,𝐶) =  �(𝐼 − 𝑢)2 𝑑𝑥 +  𝜇 
 

Ψ

� |∇ 𝑢|2
 

Ψ\C

 𝑑𝑥 + 𝑣|𝑐| 

Where first term is the data term, which forces u to be close to the image I, second term is the smoothening 
term, which forces u to be smooth within each of the regions separated by the contour C. The third term 
includes regularizing the contour C, │C│ is the length of the contour C.  
Let Ψ1, Ψ2... ΨN, be the regions in Ψ separated by the contour C ,i.e. Ψ/C = 

N

i i1=
Ψ .Then the contour C can be 

expressed as the union of the boundaries of the regions, denoted by C1,C2…………….CN, i.e. C = 
N

i iC
1=

 . 

Therefore the above energy fMS (u,C) can be equivalently written as 

𝑓𝑀𝑆  (𝑢1, 𝑢2, … … … …  𝑢𝑥  , Ψ1,……………… ΨN) = 

�  
𝑁

𝑖−1

��(𝐼 − 𝑢𝑖)2 𝑑𝑥 + 
 

Ψ

𝜇 � |∇ 𝑢𝑖|2
 

Ψ\C

 𝑑𝑥 +  𝑣|𝑐𝑖|� 

Where u i is the smooth function defined on the region Ψi. The methods aiming to minimize this energy are 
called piecewise smooth models. This procedure is computationally expensive and more over the piecewise 
model is sensitive to the initialization of the contour C.  In a variational level set formulation, Chan and Vese 
[2] simplified the Mumford-Shah functional as the following energy. 

𝑓𝑐𝑣(Φ ,𝐶1,𝐶2) =  �|𝐼(𝑥)−  𝐶1|2 𝐻 � Φ (x)� dx +
 

Ψ

 

 �|𝐼(𝑥)−  𝐶2|2 (1 −𝐻 � Φ (x)�) dx +
 

Ψ
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𝑣 �|∇ 𝐻 (Φ (x))|
 

Ψ

𝑑𝑥 

where H is the Heaviside function, and Φ is a level set function [3]-[5]. The first two terms represent the data 
fitting terms, while the third term, with a weight v > 0, regularizes the zero level contour.  Image segmentation 
is therefore achieved by find the level set function Φ and the constants c1 and c2 that minimize the energy fCV. 
 

III. Frame work for Image Segmentation and Non-uniformity Correction 
 
(a) Image model and problem Statement: 

In order to deal with intensity non-uniformities in image segmentation, segmentation is based on image 
model. Image model describes the composition of real world images in which intensity non-uniformities 
represented as a component of an image. 
Here we consider the multiplicative model of intensity non-uniformity from the physics of imaging in a variety 
of modalities, an observed image I can be represented as  

    I = bf T + Na 
Where T is the real image, it measures the intrinsic physical property of objects being imaged which is assumed 
to be piecewise constant, and bf accounts for intensity non-uniformity , it is also called as bias field, Na is 
additive noise and it can be assumed to be zero mean Gaussian noise. Here we consider the image I as a 
function I: Ψ→R defined on a continuous domain Ψ. The assumptions of real image and bias fields are 
explained in detailed as shown below: 

[1] Consider a circular neighbourhood ѺY, in this each pixel having different bias fields. The bias field bf is 
slowly varying and can be approximated by a constant in a neighbourhood. 

[2] The real image T approximately divided into N distinct constant values c1…….cN in disjoint regions 
Ψ1……… ΨN respectively, where regions Ψ1…….. ΨN forms a partition of the image domain 
 
i.e. Ψ = ⋃ Ψi𝑁

𝑖=1  and   Ψi∩  RΨJ = Null Set for i≠ 𝑗 
 

Based on the observed image and the above two assumptions, we proposed a method to estimate the 

regions
𝑁
Ψ𝑖
𝑖 = 1

, the constants
𝑁
𝐶𝑖

𝑖 = 1
, and the bias field. The estimations of regions, constants and bias fields are 

denoted as
𝑁
Ψ𝑖
𝑖 = 1

,  
𝑁
𝐶𝑖

𝑖 = 1
and 𝑏� To avoid the spurious segmentation results caused by image noise, the bias field 

bf should be slowly varying and the regions should satisfy the certain regularity property. Based on the image 
model and the above two assumptions we will define a criterion. This criterion defined in terms of   the regions 
Ψi , constants ci and function bf, as an energy in a variational framework, which is minimized for finding the 
optimal regions 
𝑁
Ψ𝑖
𝑖 = 1

,, constants
𝑁
𝐶𝑖

𝑖 = 1
, and bias field 𝑏� . The result of framework and minimizing the energy in image 

segmentation and bias field estimation are simultaneously achieved.  
 
(B)    Local Intensity Clustering Property: 
 Region based image segmentation method typically depend on a specific region descriptor of the 
intensities of in each region to be segmented [6]. For example consider the seeded region based model, in this 
set of seeds as input along with the image. The seeds mark each of objects to be segmented. But this method is 
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difficult to give such type of region descriptor for images with intensity non-uniformities. The overlap between 
the distributions of the intensities in the regions Ψ1………ΨN with the presence of intensity that’s why it is 
impossible to segment these regions directly based on the pixel intensities. The property of local intensities is 
simple, which can be effectively exploited in the formulation of our method for image segmentation with 
simultaneous estimation of the bias field.  Based on the observed image and assumptions we are able to derive a 
useful property of local intensities, which is referred to as a local intensity clustering property. Consider a 
circular neighbourhood with a radius ρ centered at each point y  Ψ that is    

            ѺY ≜ {𝑥: |𝑥 − 𝑦| ≤  𝜌}. 

The partition region 
𝑁
Ψ𝑖
𝑖 = 1

,  of the entire domain Ψ induces a partition of the neighbourhood of the ѺY, i.e, 

{O𝑌 ⋂ Ψ𝑖𝑁
𝑖=1 }  forms a partition of ѺY.  

  
For a slowly varying bias field bf, the values bf(x) for all x in the circular neighbourhood ѺY are close to bf(y).  

bf(x) ≈ bf(y)     for   x ϵ Ѻy 

 
Where bf(x) is the bias field with the function of x, bf(y) is the bias field with the function of y. Thus, the 
intensities bf(x)T(x) in each sub-region ѺY∩Ψi  are close to the constant bf(y) that is  

bf(x)T(x) ≈ bf(y)ci     for   xϵ Ѻy∩ Ψi 
 

where bf(y) ci is the constant, bf(y) is the bias field with the function of y, bf(x) is the bias field with the 
function of x, and T(x) is the real image with the function of x. substitute above equation in the observed image 
equation then we get 
 

I(x) ≈ bf(y) ci+ Na(x)     for   x ϵ Ѻy∩ Ψi 
 

In the above equation Na(x) is the additive zero mean Gaussian noise. That is the intensities in the set 
i

Y
I = {I(x): 

x ϵ Ѻy∩Ψi} forms a cluster with center mi ≈ bf(y)ci , which can be considered  as samples drawn from a 
Gaussian distribution with mean mi. 
 
(C) Energy formulation: 

By using the local intensity clustering property intensities in the neighbourhood ѺY can be classified 
into N clusters, with centers mi ≈ bf(y) ci. This property is applied to the standard K means clustering to classify 
these local intensities. For the intensities I(x) in the neighbourhood ѺY, the K means algorithm is an iterative 
process to minimize the clustering criterion. It can be written in a continuous form as 

𝐹𝑦 =  � �|𝐼(𝑥)−𝑚𝑖|2𝑢𝑖𝑑𝑥
 

O𝑦

𝑁

𝑖=1

 

Everyplace mi is the cluster center of the ith cluster, ui is the membership function of the region Ψi . i.e, ui(x)=1 

for x ϵ Ψi  , ui (x)=0 for x does not belongs to Ψi [3], [7], [8]. The above equation is in the form of energy 

equation F=∫x dx . Then the above equation can be rewritten as 

𝐹𝑦 =  � � |𝐼(𝑥)−𝑚𝑖|2𝑑𝑥
 

Ψi∩O𝑦

𝑁

𝑖=1

 

In view of the clustering criterion in above equation and the approximation of the cluster center by mi ≈
bf(y)Ci. Clustering criterion for classifying the intensities in ѺY as 
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𝑅𝑦 =  � � 𝑘(𝑦 − 𝑥)�𝐼(𝑥)− 𝑏𝑓(𝑦)𝑐𝑖�
2
𝑑𝑥

 

Ψi∩O𝑦

𝑁

𝑖=1

 

 
Where )( xyk −  is non-negative window function, also called as Kernel function [9]. K(y-x) = 0 for x does not 
belongs to ѺY. With the window function, the clustering criterion function Ry can be rewritten as 

𝑅𝑦 =  � �𝑘(𝑦 − 𝑥)�𝐼(𝑥)− 𝑏𝑓(𝑦)𝑐𝑖�
2
𝑑𝑥

 

Ψi

𝑁

𝑖=1

 

 
This local clustering criterion function is a basic element in the formulation of our method. The local clustering 
criterion function Ry evaluates the classification of the intensities in the neighbourhood ѺY given by the 
partition �Oy ⋂ Ψ𝑖𝑁

𝑖=1 � of ѺY. The smaller value of the Ry is the better classification. 
 

We define the optimal partition 
𝑁
Ψ𝑖
𝑖 = 1

, of the entire domain Ψ. Such that the local clustering criterion function 

Ry is minimized for all y in Ψ. Then we need to jointly minimize Ry for all y in the Ψ. This can be achieved by 
minimizing the integral of Ry with respect to y over the image domain Ψ .We define an energy  

                          R = ∫ Ry dy 
 

𝑅 = �� � �𝑘(𝑦 − 𝑥)�𝐼(𝑥)− 𝑏𝑓(𝑦)𝑐𝑖�
2
𝑑𝑥 

 

Ψi

𝑁

𝑖=1

� 𝑑𝑦 

 
We omit the domain Ψ in the subscript of the integral symbol if the integration is over the entire domain Ψ. By 
minimizing the energy with respect to the regions Ψ1……ΨN, constants c1……cN and the bias field bf, we can 
estimate the bias field and image segmentation. The choice of kernel function k is flexible. For example it can 
be a truncated uniform function, defined as K(u)=a for   |u| ≤ ρ and k(u)=0 for |u| > ρ. If a is positive constant 
then ∫ k(u)=1. Then kernel function k is chosen as a truncated Gaussian function defined by  

𝑘(𝑢) = �(1/𝑒)ℓ−|𝑢|2  / 2𝜎2,   𝑓𝑜𝑟 |𝑢| ≤ 𝜌
0, otherwise

 

where e is the normalized constant, σ is the standard deviation  of the Gaussian noise, ρ is the radius of the 
neighbourhood  ѺY 
 
According to the degree of the intensity non-uniformity the neighbourhood ѺY and the radius ρ should be 
selected. For more localized intensity non-uniformity the bias field b varies faster and the approximation of the 
equation bf(x) ≈ bf(y)     for   x є фy. The above equations are valid only in the smaller neighbourhood. A 
smaller ρ should be used as the radius of the neighbourhood фY. 
 
IV. Level Set Formulation and Energy Minimization 
 

In level set formulation, level set function takes only positive and negative signs and this represents a 
part in the image Ψ. From the expression of є we cannot derive solution to the energy minimization problem. 
And by using well- established variational methods, the energy minimization can be solved in level set 
formulation. Consider ф: Ψ→R represents a level set function, and then it defines two disjoint regions 
     Ψ1={x: ф(x) > 0}                                 Ψ2 ={x: ф(x) < 0} 
     There are two types of level set formulation. They are  
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(1) Two phase level set Formulation (N=2) 
(2) Multiphase level set formulation(N>2) 

(1). Two phase level set formulation: 
 In this case the image domain is partitioned into two disjoint regions Ψ1 and Ψ2 and a level set function 
is ф is used to represent the disjoint regions. Here the two disjoint regions Ψ1 and Ψ2 are represented with their 
membership functions defined by M1(ф)=H(ф) and M2(ф)=1-h(ф), where H is the Heaviside function [10], 
[11]. We can define energy as 

𝑅 = �� � �𝑘(𝑦 − 𝑥)�𝐼(𝑥)− 𝑏𝑓(𝑦)𝑐𝑖�
2
𝑑𝑥 

 

Ψi

𝑁

𝑖=1

� 𝑑𝑦 

Thus for N=2 case the above energy equation can be expressed in terms of the level set formulation 

𝑅 = ����𝑘(𝑦 − 𝑥)�𝐼(𝑥)− 𝑏𝑓(𝑦)𝑐𝑖�
2
M𝑖(ϕ(x))𝑑𝑥 

 

 

𝑁

𝑖=1

� 𝑑𝑦 

By exchanging the order of integration we have 

𝑅 = ����𝑘(𝑦 − 𝑥)�𝐼(𝑥)− 𝑏𝑓(𝑦)𝑐𝑖�
2
𝑑𝑦 

 

 

𝑁

𝑖=1

�M𝑖(ϕ(x))𝑑𝑥 

The variables of the energy R can be written as R(ф,C,bf) where C represents the constants c1……cN with a 
vector c, ф represents the level set function and bf represents the bias field [12]. The energy R(ф,C,bf) can be 
rewrite as 

𝑅�𝛷,𝐶, 𝑏𝑓� =  ���𝑒𝑖(𝑥)𝑀𝑖(
𝑁

𝑖=1

𝛷(𝑥)�𝑑𝑥 

Where 𝑒𝑖 is given by 

𝑒𝑖(𝑥) =  �𝑘(𝑦 − 𝑥)�𝐼(𝑥)− 𝑏𝑓(𝑦)𝐶𝑖�
2
𝑑𝑦 

The equivalent expression for the function ei can be defined as 
𝑒𝑖(𝑥) =  𝐼21𝑘 − 2𝑐𝑖𝐼�𝑏𝑓 ∗ 𝑘� + 𝑐𝑖2(𝑏𝑓2 ∗ 𝑘) 

Where * is the convolution operator and 1k=∫k(y-x) which is equal to constant 1, except near the boundary of 
the image Ψ [13]. The variational level set formulation is defined by 

𝐹�𝜙, 𝑐,𝑏𝑓� =  𝑅�𝜙, 𝑐,𝑏𝑓� + 𝑣𝐿(𝜙) + 𝜇𝑅𝑝(𝜙) 
Where L(ф) and Rp(ф) can be defined as the regularization terms 

𝐿(𝜙) =  �|∇ 𝐻 (𝜙)|𝑑𝑥 

The L(ф) represents the arc length of the contour and then it smooth the contour
 

𝑅𝑝(𝜙) =  �𝑝(|∇ 𝜙|)𝑑𝑥 

The Rp(ф) is also called as distance regularization term and in different general variational level set formulation 
is called as distance regularized level set evolution [14]. The level set function ф and the bias field estimation 
gives the result of image segmentation and this can be obtained by minimizing the energy. The energy can be 
minimized in iteration process, and in each iteration the minimizing can be done by doing partial differentiation 
of F(ф,C,bf) with respect to ф, c, and bf. 

(1) Energy Minimization with respect to ф: 
      By making C and b as fixed, the minimization of F(ф,C,bf) with respect to ф can be achieved by using 

standard gradient descent method 
𝜕𝜙
𝜕𝑡

= − 𝜕𝑓
𝜕𝜙

     Where 𝜕𝑓
𝜕𝜙

  is the gateaux derivative. 
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By minimizing the energy R(ф,C,bf) with respect to C and bf, the constants c1 and c2 in C and the bias 
field bf are updated during the level set formulation. 
 

(2) Energy minimization with respect to C: 
By making ф and b as fixed, the optimal C that minimizes the energy R(ф,C,bf) denoted by Ĉ= ( Ĉi…… 
Ĉn) by, is given by 

𝐶𝚤� =
∫�𝑏𝑓 ∗ 𝑘�𝐼𝑢𝑖𝑑𝑦
∫�𝑏𝑓2 ∗ 𝑘�𝑢𝑖𝑑𝑦

, 𝑖 = 1,2, … … …𝑁                  𝑢𝑖(𝑦) =  𝑀𝑖�∅(𝑦)�.    
 

  (3)Energy minimization with respect to bf: 

       By making ф and C as fixed, the optimal b that minimizes the energy R(ф,C ,bf) denoted by 𝑏𝑓�   

𝑏𝑓� =
�𝐼𝑇(1)� ∗ 𝐾
𝑇(2) ∗ 𝐾            𝑤ℎ𝑒𝑟𝑒 𝑇(1) = �𝑐𝑖𝑢𝑖 𝑎𝑛𝑑 𝑇(2) = �𝑐𝑖2𝑢𝑖  

𝑁

𝑖=1

𝑁

𝑖=1

 

 

The slowly varying property of the derived optimal estimator  𝑏𝑓�    is convoluted with 

Kernel function k.  

(2). Multi-Phase Level set Formulation: 

In this case we use two or more level set functions ф1…фk to define N membership functions [7].                    

                                                             
M1(∅1,∅2) = H(∅1,∅2), 

                                                             M2(∅1,∅2) = H(∅1)(1-H(∅2)), 
                                                             M3 (∅1,∅2) = 1-H(∅1). 

And the above functions gives the three phase level set formulations. The energy in the first equation can be 

converted to a multiphase level set formulation is expressed as
 

𝑅�ф,𝐶,𝑏𝑓� ==  ���𝑒𝑖(𝑥)𝑀𝑖(
𝑁

𝑖=1

Φ(𝑥)�𝑑𝑥 

The energy functional F in multiphase level set formulation is given by  
 

F(ϕ, C, bf) ≜ R(ϕ, C, bf) + Rp(ϕ) 

The minimization of the energy ε (ф, C, b) can be achieved by the same procedure as in the two-phase case 
[15], [16]. 
 

V. SIMULATION RESULTS AND DISCUSSIONS 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013                                                                    862 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org 

                  We first demonstrate our method in the two-phase case (i.e. N=2). Unless otherwise specified, the 
parameter σ is set to 4for the experiments in this section. All the other parameters are set to the default values. 
Fig. 1 shows the results for a MRI image. The curve evolution processes are depicted by showing the initial 
contours (in the left column), bias field (in the middle column). 

           

 

        Fig. 1: Segmentation for MR images. 

Intensity non-uniformities can be clearly seen in these two images. Our method is able to provide a desirable 
segmentation result for such images. The estimated bias field by our method can be used for intensity non-
uniformity correction (or bias correction). Given the estimated bias field, the bias corrected image is computed 
as the quotient I/b̂f. To demonstrate the effectiveness of our method in simultaneous segmentation and bias field 
estimation, we applied it to medical images with intensity non-uniformities. These images exhibit clear intensity 
non-uniformities. The initial contour is plotted on the original image in Column 1 of Fig.2. The corresponding 
results of segmentation, bias field estimation, and bias correction are shown in Columns 2, 3 and 4, respectively. 
These results demonstrate desirable performance of our method in segmentation and bias correction. We first 
display the results for MR images in the first column of Fig. 2. These images exhibit obvious intensity non-
uniformities. The segmentation results, computed bias fields, bias corrected images, are shown in the second, 
third, and fourth column respectively. It can be seen that the intensities within each tissue become quite 
homogeneous in the bias corrected images. The improvement of the image quality in terms of intensity 
homogeneity can be also demonstrated by comparing the histograms of the original images and the bias 
corrected images. 
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Fig. 2: Simulation Results with MR images as input 
 
 
 
 
 
 
 
 

 
Fig. 3: Simulation Results with another MR Image as input along with Histograms 

 
 
The histograms of the original images (left) and the bias corrected images (right) are plotted in the fifth column. 
The results of the real world images are as follows. In the fig. 4,  it consists of the different modules in the real 
world images such as 50 iterations in column-1,bias field in column-2, Bias corrected in column-3,and the 
original image in column-4 ,and the histogram is generated between the original image and the bias corrected 
image as shown in the fig 3. 
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Fig. 4: Simulation Results with another MR Image as input along with Histograms 
 
The results of novel region based method when applied on the real world images in multiphase are shown 
below: 

 
 

 
 

Fig 5: Simulation Results of Multiphase algorithm with Real world Images as input along with  
           Histograms. 
 
The present work can be extended by considering a specialized database or set of images of different categories. 
Also by considering rectangular neighbourhood rather than circular neighbourhood the overlapping of intensity 
regions can be avoided well. 
 

VI.CONCLUSION 
 
A variation level set framework for segmentation and bias correction of images with intensity non-

uniformities is presented. Based on a generally accepted model of images with intensity non-uniformities and a 
derived local intensity clustering property, we define energy of the level set functions that represent a partition 
of the image domain and a bias field that accounts for the intensity non-uniformity. Segmentation and bias field 
estimation are therefore jointly performed by minimizing the proposed energy functional. The slowly varying 
property of the bias field derived from the proposed energy is naturally ensured by the data terminal our 
variation framework, without the need to execute a clear smoothing term on the bias field. Our method is much 
more robust to initialization than the piecewise smooth model. Experimental results have demonstrated superior 
performance of our method in terms of accuracy, efficiency, and robustness. As an application, this method can 
been applied to MR image segmentation and bias correction with promising results. 
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